Optimized platform medium and feed for rCHO cell lines using the CHEF1® expression system
نویسندگان
چکیده
Chinese Hamster Ovary (CHO) cells are widely used in biomanufacturing and biomedical research to produce proteins of clinical significance. The environment the cells grow in to produce these proteins is complex and varies across the industry. One key variable in production processes is the cell culture medium used. Media can include chemically-defined components such as amino acids, vitamins, lipids, metal salts, and buffers. In addition, undefined components such as proteins, serum, or hydrolysates may be added. To reduce complexity, increase consistency, and comply with increasing demands from regulatory entities, chemically-defined formulations are preferred and can be developed and optimized for a given cell line. While a medium and feed can be optimized for every cell line/clone, developing a platform system provides a cost-effective option while ensuring a high level of growth and productivity. In this collaboration, between Life Technologies PDDirect and CMC Biologics, a single animal origin-free, hydrolysate-free base platform medium and three synergistic feed media were developed for use with recombinant CHO cell lines engineered using the CHEF1 expression system to produce monoclonal antibodies. The CHEF1 expression system utilizes regulatory domains from the Chinese hamster elongation factor 1 (EF1a) gene to drive production of heterologous proteins [1]. Serum-free, suspension adapted CHO DG44 cells were transfected with CHEF1 plasmids harboring 2 different IgG1 MAb genes and used as test cell lines to develop a platform feed system. A cell culture production platform system (CHEF1, base medium, feed media) was developed and optimized using two cell lines that were previously grown in an undefined culture system. The new platform growth system developed here, showed an average 1.6 fold improvement in titer for the two cell lines compared to the performance using the undefined culture system. Using Design of Experiment (DOE) methods, we performed a Feed Mixtures experiment and a 2-Level Categoric experiment in shake flasks (culture parameters are shown in Table 1). Cell counts and viabilities were determined using a Cedex AS20 automated cell counter (Innovatis Inc.). Product titer was measured by Protein A HPLC. Performance data from the Feed Mixtures experiment were analyzed using Design Expert (Stat-Ease). Select spent media samples from the best performing Feed Mixtures conditions were analyzed for glucose, amino acids and select water-soluble vitamins using immobilized enzyme (YSI Life Sciences), UPLC (Waters AccQ-TagTM reverse phase with UV detection) and HPLC (ion-pair reverse phase using a UV detection), respectively. The Feed mixtures data were used to calculate nutrient consumption rates, which in turn were used to develop 3 balanced feeds (at neutral pH). A separate Feed Supplement (at high pH) was designed to facilitate delivery of components that were needed at levels above solubility limits in a neutral solution. These feeds and the Feed Supplement were then tested in a 2-Level Categoric experiment, evaluating feed volume, feed schedule, and the feed supplement. Performance data from this experiment were analyzed using Design Expert. Select spent media samples from the best performing conditions were analyzed for glucose, amino acids and select water-soluble vitamins. These data demonstrated that the three feeds were balanced and, when the feed supplement was included, provided nutrients at levels sufficient for continued growth/productivity. The best performing feed system (balanced feed [BF1] and feed supplement [FS]) was used in a bioreactor confirmatory experiment * Correspondence: [email protected] Life Technologies Corporation (PD-Direct® Bioprocess Services), 3175 Staley Road, Grand Island, NY, 14072 USA Full list of author information is available at the end of the article Paul et al. BMC Proceedings 2013, 7(Suppl 6):P98 http://www.biomedcentral.com/1753-6561/7/S6/P98
منابع مشابه
Ectopic Expression of Embryo/Cancer Sequence A (ECSA) in KYSE-30 Cell Line Using Retroviral System
Background Human preimplantation embryonic cells share many similarities with cancer cells such as ability to self-renew, unlimited proliferation and maintenance of the undifferentiated state. Embryo-cancer sequence A (ECSA), also known as developmental pluripotency associated-2 (DPPA2), is a cancer testis antigen (CTA) with unclear biological function yet. Objective: CTAs are expressed normal...
متن کاملProteomics Profiling of Chimeric-Truncated Tissue Plasminogen activator Producing- Chinese Hamster Ovary Cells Cultivated in a Chemically Defined Medium Supplemented with Protein Hydrolysates
Background: Culture media enrichment through the addition of protein hydrolysates is beneficial for achieving higher protein expression. Methods: In this study, designing the optimum mixture of four soy and casein-derived hydrolysates was successfully performed by design of experiment and specific productivity increased in all predicted combinations. Protein profile of recombinant CHO (rCHO) ce...
متن کاملExpression of Recombinant Alpha-1 Antitrypsin in CHO and COS-7 Cell Lines Using Lentiviral Vector
In this study, in order to facilitate and accelerate the production of eukaryotic protein alpha 1-antitrypsin (AAT) with correct post-translational modifications, a protein production system based on the transduction of CHO and COS-7 cells using lentiviral vectors was developed. Human AAT cDNA was cloned into a replication-defective lentiviral vector. The transgene AAT-Jred chimer was transferr...
متن کاملP-66: Optimization of Human Luteinizing Hormone Expression in CHO Cells Culture by Stepwise Reduction in Serum Concentration
Background: Mammalian Cell lines are the main expression system for the production of recombinant therapeutic proteins. Optimization of cell culture condition is performed via alteration in different parameter. Cell culture media plays an important role in cell cycle because of compounds such as amino acids, vitamins, inorganic salts, glucose, and serum as a source of growth factors, trace elem...
متن کاملInvestigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach
Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...
متن کامل